Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition

نویسندگان

  • Xishun Jiang
  • Miao Zhang
  • Shiwei Shi
  • Gang He
  • Xueping Song
  • Zhaoqi Sun
چکیده

Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (-0.1, -0.3, -0.5, -0.7, and -0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV-vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of Ga-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis

In this research, zinc oxide thin films with gallium impurity have been deposited using the spray pyrolysis technique. The structural and optical properties of these films are investigated as a function of gallium doping concentrations. The ZnO and ZnO:Ga  films grown at a substrate temperature of 350 ºC with gallium doping concentrations from 1.0 to 5.0.%. The XRD analysis indicated that ZnO f...

متن کامل

The effect of saccharin on microstructure and corrosion behavior of nanocrystalline nickel thin films in alkaline solution

In this study the effect of crystallite size reduction and microstructure on the electrochemical corrosion behavior of nanocrystalline nickel (NC Ni) were investigated using Tafel polarization and electrochemical impedance spectroscopy (EIS) measurements in 10 wt.% NaOH. NC Ni coatings were produced by direct current electrodeposition using chloride baths in presence and absence of saccharin as...

متن کامل

DMMP Sensing Performance of Undoped and Al Doped Nanocrystalline ZnO Thin Films Prepared by Ultrasonic Atomization and Pyrolysis Method

Highly textured undoped (pure) and Al doped ZnO nanocrystalline thin films prepared by ultrasonic atomization and pyrolysis method are reported in this paper. ZnCl2 water solution was converted into fine mist by ultrasonic atomizer (Gapusol 9001 RBI Meylan, France). The mist was pyrolyzed on the glass substrates in horizontal quartz reactor placed in furnace. The Structural and microstructural ...

متن کامل

Effect of annealing and UV illumination on properties of nanocrystalline ZnO thin films

ZnO thin films with preferred orientation along the (002) plane were prepared onto the glass substrates by the sol-gel spin coating method for different post- annealing temperatures. The XRD study confirms that the thin films grown by this method have good crystalline hexagonal wurtzite structure. The optical band gap of the samples was determined from UV-visible spectra. It is found that the s...

متن کامل

Annealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films

   In this work, the effect of annealing temperature on the microstructure, morphology, and optical properties of Cu-doped nanostructured MnO2 thin films were studied. The thin films were prepared by sol-gel spin-coating technique on glass substrates and annealed in the air ambient at 300, 350, 400 and 450 °C temperatures. The structural, morphological and optical properties of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014